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Abstract. A one-dimensional diagonal tight binding electronic system with dichotomic correlated disorder
is investigated. The correlation of random potential exponentially decays with distance and also with
the dichotomic correlation parameter λ. Using a appropriate approximation, an analytical transmission
coefficient expression is obtained. The obtained analytical expression is then tested against the result of
the direct numerical computation of the average transmission coefficient 〈T 〉 for the Anderson model, by
changing the system parameters. In the thermodynamic limit the transmission coefficient relation indicates
the absence of localization-delocalization transition, which is entirely consistent with numerical predictions.

PACS. 05.60.Gg Quantum transport – 72.15.Rn Localization effects (Anderson or weak localization) –
72.20.Ee Mobility edges; hopping transport – 64.60.Cn Order-disorder transformations; statistical me-
chanics of model systems

1 Introduction

According to Bloch’s theorem, electronic states in per-
fectly ordered crystal are extended, which implies that
the probability of finding an electron is the same over
the entire system. Such extended states are an indica-
tion of metallic behavior. It has been more than four
decades since Anderson pointed out that electron states
become localized when disorder is introduced in the crys-
tal, and the system can undergo a metal-insulator tran-
sition (MIT) [1,2]. It has also been known for almost
forty years from scaling theory that in standard one-
dimensional (1D) and two-dimensional (2D) disorder mod-
els all states are localized for any amount of disorder [3].
The phenomena of Anderson localization of electrons and
the disorder-induced MIT have been studied since the in-
troduction of the model [4,5]. While it may seem that
after forty years of scrutiny nothing more could be said
about the localization properties of 1D and 2D models, in
fact their localization properties have recently attracted
a great deal of attention. This renewed interest is due to
mostly the correlation introduced in the disordered po-
tential, which often causes an unexpected phenomenon:
most intriguing is the breakdown of the Anderson local-
ization in 1D systems. Breakdown of Anderson criterion of
localization has been predicted for the first time for a ran-
dom dimer model [6,7], wherein a short-range correlation
has been introduced by a binary distribution. For a recent
experiment using binary disorder see the reference [8]. A
number of important studies on short range correlated
disorder have also recently been worked out [9,10]. This
unexpected result has motivated further studies into the
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nature of 1D systems with a long-range correlated disor-
der [11–14]. Especially in the system in which the poten-
tial sequences {εi} has a power-law spectral density of the
form S(k) ∝ k−p [15,16] is particularly important. Here,
k is the wave number of the wavelength of the undulation
on the random parameter landscape. For exponent p is
greater than 2.0, there is a finite range of energy eigen-
values with extended eigenstates [17–21]. This result indi-
cates the presence of MIT contradicting the conclusion of
the single parameter scaling theory. For exponent p ≤ 2,
although there are no extended eigenstates, the scaling
behavior corresponding to this case has also opened up
an interesting research field due to the interpretation of
single parameter scaling theory (SPST) [22–30].

The most common element presented in a number of
works references [23–25] is that they all have a power-law
spectral density which can be defined by the exponent
p = 2 at large k. This particular value of the exponent
is important since p = 2 is the localization-delocalization
critical point for the potential landscape of the long-range
correlated disorder of references [17–21]. The author of
reference [25] has studied the scaling properties of a par-
ticular form of correlated disorder that is associated with
spin glass chains, moreover, has discovered that the scal-
ing function shows a crossover near the band edge. The
correlated random Markovian energy sequences have been
analyzed in reference [26], and the authors observed that
in some relevant situations the behavior of the Lyapunov
exponent is different from the inverse of the correlation
length.

The authors of reference [24] have shown that the in-
troduction of dichotomic correlation in a random potential
sequence, which is also going to be our focus in the scope
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of this paper, leads to an additional parameter governing
the validity of SPST. In their work they have calculated
the approximate average Lyapunov exponent by consid-
ering three spectral regions with different transport prop-
erties. In the context of their work, this approximation
means neglect of commutators between one-step transfer
matrices at different sites. The relevance of the obtained
average Lyapunov exponent and the new scaling param-
eter were tested by comparing them with the direct nu-
merical calculations. We think that the statement of their
approximation is very understandable and clear; however
its use and justification in the derivation of the Lyapunov
exponent is quite confusing and ambiguous. Although this
current paper is mainly inspired by references [23,24], in
our calculations we are going to use a different approxima-
tion with the hope that it might be more understandable
and also more easily repeated in the future.

In the present paper, we focus upon correlation in-
duced changes in the transmission coefficient relation. To
do so, we have considered a tight-binding model with ran-
dom correlated potential described by a zero-mean di-
chotomic process. The potential sequence in dichotomic
processes is defined as εn = V χn; here V is the ampli-
tude of the potential and χn is the dichotomic processes
assuming only the values of ±1 with Poisson probabil-
ity. Therefore, the dichotomic processes is very similar to
the well known binary processes. However, to build a bi-
nary random potential sequence two different potential
values εA and εB are assigned at random to each lattice
site with probability P and 1 − P respectively. The util-
ity of preferring a dichotomic process is that it allows for
an approximate analytical treatment of the transmission
coefficient. In the following section, we will describe the
theoretical model which is going to be used in this work
together with some properties of the dichotomic process.
In the third section, an average analytical transmission
coefficient will be derived. By comparing the analytical
and numerical calculations, the relevance of the analyt-
ical expressions are also going to be tested in the same
section. Further, making use of this analytical relation,
we are going to try to evaluate and test the prediction
found in references [17–21] for p = 2 analytically. In the
last section, we are going to investigate the transmission
coefficient distribution function and also the transmission
coefficient probability density function. In the same sec-
tion, the cumulants of the scaling variable lnT are also
going to be calculated numerically in order to obtain a
possible analytical relation between them.

2 Theoretical model

2.1 Conductance and dichotomic process

As a model system, we considered noninteracting electrons
in a one-dimensional dichotomic correlated disordered sys-
tem within a tight binding approximation. For a discrete
lattice chain, the Schrödinger equation of the model is ex-
pressed as

V χiψi + t(ψi+1 + ψi−1) = Eψi (1)

where ψi is the amplitude of the wave function at the ith
site of the lattice, V describes the strength of the random
potential and χi is the dichotomic random variable which
takes the values of 1 or −1. The overlap integral parame-
ter or the hopping energy t is going to be set to unity in
the following and, thus, a sequence of correlated disorder
potential is going to be produced by the dichotomic pro-
cess. The localization length ξ of a state with energy E is
given [31] as

1
ξL

= − 1
2L

〈ln T 〉 (2)

where L is the length of the chain which can be set to
an integer N if the lattice spacing is set to unity, 〈. . . 〉
denoting the average over the possible realization of the
system. Here, T is the transmission coefficient which is
related to the eigenvalues of the matrix Q defined as

Q = T T
MTM (3)

where TM is the transfer matrix. For the discrete Hamilto-
nian lattice model, the propagation of the excitation along
the system can be expressed in the following form:(

ψi+1

ψi

)
=

(
E − εi −1

1 0

) (
ψi

ψi−1

)
(4)

where the one-step transfer matrix Ti is defined as(
E − εi −1

1 0

)
. (5)

The transfer matrix TM describing the evolution of the
initial state vector across N sites can be readily expressed
as the product of one-step matrices if the distance between
adjacent sites is set to unity, that is

TM =
N∏
i

Ti. (6)

The eigenvalues of Q are real positive numbers coming in
inverse pairs. Expressing the eigenvalues as qi,1 = eνi and
qi,2 = e−νi , the transmission eigenvalues can be given by

T =
2

1 + cosh(νi)
. (7)

The conductance of a 1D transport is defined by the
Landauer formula as g = T in the unit of 2e2/h [32–34];
here the factor of 2 is due to the two possible spin states
of an electron.

2.2 Dichotomic correlated potential sequence

In this paper we want to consider the special effects of
spatially correlated potential sequence on the transport
properties of the system. For this reason we will use a di-
chotomic rule to generate the random potential sequence.
The dichotomic or random telegraph process can be sum-
marized briefly in the following manner.
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Let consider a random process that has the properties:

i) the dichotomic variables χn have only the ±1 values;
ii) the probability of the initial dichotomic variable χ0

is the same, that is, P (χ0 = 1) = P (χ0 = −1) = 1/2;
iii) defining χn = χ0(−1)Nn , here Nn denotes a Poisson

process and n is the nth lattice site, a dichotomic pro-
cess can be created. The probability of Nn is defined
by the Poissonian process as

P (Nn = m) =
(αn)me−αn

m!
. (8)

It is well-known that this process has a zero mean, that
is 〈χn〉 = 0, and so the two points correlation function
corresponding to this process can also be expressed [35] as

〈χnχn+�〉 = e−2α� (9)

where � is the distance between the sites n and n + �.
The probability of having the values of 1 or −1 for each
lattice site is given as P (χn = 1) = e−α cosh(α)
and P (χn = −1) = e−α sinh(α), respectively if the
initial dichotomic variable is set to 1. Thus, a lattice
consisting of N site has the number of site with the
value of 1, N+ = NP (χn = 1), and the number of site
with a −1 value, N− = NP (χn = −1); here appar-
ently N is equal to N+ + N−. We think it is impor-
tant to mention that the dichotomic process described
above is same as the dichotomic process used in refer-
ence [24] if the definition of the inverse of correlation
radius 1

rc
= − liml−>∞ 1

l ln〈ξn+lξn〉 (or the correlation
length for the random potential Ref. [26]) is considered.
Thus, 1

rc
is equal to 2α in the formulation of this paper.

And also, the assumed value remains constant within the
region of the random segment lc is equal to cothα

The other important quantity in the study of corre-
lated disorder is the power spectral density S(k) which is
defined as the Fourier transform of the two points corre-
lation function. Thus, evaluation of the Fourier transform
of equation (9) leads to

S(k) =
α
√

π
2

k2 + 4α2
. (10)

The form of the above spectral density is equivalent to the
p = 2 case studied in references [17–21] for α � k. This
observation is a good indication of the absence of MIT in
the case of dichotomic correlated disorder if the results of
the cited references are considered. Thus, a further inves-
tigation into the existence of Metal-Insulator transition
in the presence of dichotomic correlated disorder in the
Anderson model turns out to not be an interesting point.
However, we think that studying analytically the trans-
mission properties of the system of a dichotomic correlated
Anderson model is certainly a valuable point to consider.
Therefore, in the following section, we are going to mainly
focus upon to obtaining an approximate analytical rela-
tion for the transmission coefficient of this system.

3 Transmission coefficient relation
for the dichotomic process

In this section, we investigate analytically the transport
properties of electronic state moving in a lattice endowed
by a dichotomic correlated random potential sequence.
The transport nature of the system can be best described
by the transmission coefficient or equivalently by the con-
ductivity of the system introduced in the above section.
For most potential sequences, a numerical evaluation of
these quantities are quite simple in contrast to an analyt-
ical treatment. This is due to the random nature of the
potential sequences which are inserted into the one-step
transfer matrices Ti describing the change of the state in
one discreet step. In the case of a dichotomic process, how-
ever, the potential sequence takes only the values which
are either 1 or −1. Thus, the transfer matrix TM describ-
ing the evaluation of the initial state across N sites turns
out to be the product of the two distinct one-step matri-
ces. This last point is the most important property of the
dichotomic process in a possible analytical treatment of
the transmission coefficient and will be employed wher-
ever necessary. Depending on the values of the dichotomic
process χi, the one-step transfer matrices T± become

(
E ± V −1

1 0

)
. (11)

An expression relating T+ to T− can also be written quite
readily as T− = T+ + A, here A is a 2 × 2 matrix which
can be written as

(−2V 0
0 0

)
. (12)

Thus, the product of one-step matrices turns out to take
the following possible form

TM = T+
1 T

+
2 . . . T+

N1
T−

N1+1T
+
N1+2 . . . (13)

Writing T− in terms of T+, the last equation can be re-
arranged approximately as

TM = (T+)N +N−(T+)N1A(T+)N−N1−1

+
N−!

2!(N− − 2)!
(T+)N1A(T+)N2A(T+)N−N1−N2−2 . . .

(14)

In equation (14), the approximation means neglecting the
commutators between A and TNi wherever it is necessary
as already used in reference [24]. Here N− denotes the
number of sites having −1 potential value, N1, N2, . . . , Ni

are the number corresponding to the potential landscape
having the potential values of 1 without assuming any −1
values. In what follows, we find it more convenient to write
T+ in diagonal form as DΛD−1, here the matrices Λ, D
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and D−1 are equal to

Λ =
(
λ1 0
0 λ2

)
, (15)

D =
(
λ1 λ2

1 1

)
, (16)

D−1 =

(
−m mλ2

2

m −mλ1
2

)
. (17)

In the above matrices the quantities λ1 = (a−√
a2 − 4)/2,

λ2 = (a +
√
a2 − 4)/2 and m = 1/(

√
a2 − 4). Here a is

equal to |E − V | ≤ 2. Defining B = D−1AD, the transfer
matrix TM turns out to be

TM = D

[
ΛN + 2V N−ΛN1BΛN−N1−1 +

N−!
2!(N− − 2)

4V 2ΛN1BΛN2BΛN−N1−N2−2 + · · ·
]
D−1. (18)

In each term of the above TM relation, there are matrix
elements coming in the form of (λ1/λ2)Ni . If the simple
relation: λ1 is equal to the complex conjugate of λ2, λ1 =
λ∗2, is considered, the following approximation can be used
in the evaluation of the transfer matrix without omitting
the basic elements of physics. For our analysis we think it
is convenient to express the ratio λ1/λ2 in the following
complex function form as

λ1/λ2 = eiπφ (19)

where φ is equal to arctan(2a
√

4 − a2/(2a2 − 4)). Using
the standard relation | λ1/λ2 |= 1, the averaging of the
matrix elements over the possible values of Ni leads to
〈λ1/λ2)Ni〉 � 0 if The number Ni is random for each real-
ization of the system. In other words, this approximation
is very similar to the random phase approximation as al-
ready used in reference [2] in which the averaging is taken
over the scattering angle. At this point we simply assume
that the approximation is a appropriate one so long as
the correlation between the −1 potential values is omit-
ted. Thus making use of this approximation TM can be
expressed as

TM = D

[
ΛN + 2V N−C1

+4V 2 N−!
2!(N− − 2)!

C2 + · · ·
]
D−1, (20)

where C1 and C2 are equal to the following matrices

C1 =

(
−mλN

1 0

0 mλN
2

)
, (21)

C2 =

(
m2λN

1 0

0 m2λN
2

)
. (22)

TM can also be expressed more conveniently as TM =
DCD−1. Here the matrix C is equal to

C =

(
(1 + k1)λN

1 0

0 (1 + k2)λN
2

)
(23)

where k1 and k2 have the following expressions

k1 =
N−∑
j=1

N−!
j!(N− − j)!

(−2Vm)j , (24)

k2 =
N−∑
j=1

N−!
j!(N− − j)!

(2V m)j . (25)

Evaluations of these sums lead to k1 = (1 − 2Vm)N− − 1
and k2 = (1 + 2V m)N− − 1. These final results allow us
to calculate the eigenvalues of the matrix Q = T T

MTM

quite readily. Evaluation of the eigenvalues leads to the
following expression for their sum

q1 + q2 =
2

1 − a2

4

(1 + 4V 2m2)N− (26)

where, q1 and q2 are apparently the first and the second
eigenvalues of the matrix Q. Making use of this final ex-
pression, a relation for the average transmission coefficient
of the system 〈T 〉 can be readily obtained as

〈T 〉 =
2

1 + 4
4−a2 (1 + 4V 2m2)N−

. (27)

It is thus of interest to compare the analytical transmis-
sion coefficient relation with the numerical data. The nu-
merical results calculated using equation (7) have been
obtained by averaging over 103 realizations of the system.
Figures 1 and 2 present the result of numerical data to-
gether with the corresponding analytical curves by setting
the energy parameters E = 0 and E = 0.5 respectively.
It is well-known that the random phase approximation in
Anderson model for uncorrelated potential sequences at
E = 0 breaks down [36–38] and see the reference [29].
However, in both figures one can see that the analytical
relation provides a reasonably good approximation of the
numerical data. Furthermore, for the values of disorder
strength V less than 0.5 and larger than 1.5, the agreement
between the analytical results and numerical calculations
is almost perfect. In order to confirm a generic nature of
applicability of the analytical result, we have also carried
out numerical calculations for all possible energy values at
small disorder strength. The results have been presented
in Figure 3. The general trend of these curves seems to
follow the case of uncorrelated disorder as expected. From
the figure it is easy to see that the agreement between
the analytical and numerical results is quite acceptable.
Therefore it is relevant to claim that the analytical ex-
pression derived in this paper covers the general feature
of transport properties of dichotomic disorder model for
small disorder strength and small Poisson parameter α for
all values of energy.

To reveal the utility of the analytical transmission co-
efficient relation, let us calculate its tendency in the ther-
modynamic limit, namely in the limit as N goes to in-
finity. Evaluation of this limit for infinitely small disorder
strength leads to 〈T 〉 = 0. That means there is no ex-
tended state in the thermodynamic limit, which indicates
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Fig. 1. Comparison of the analytical transmission coefficient
relation with the numerical data for E = 0 at various disorder
strength V . Numerical data shown by the diamond symbol is
for α = 0.001, by the triangle symbol is for α = 0.005, and by
the square symbol for α = 0.01. The analytical result is plotted
with the short dashed line for α = 0.001, with the long dashed
line for α = 0.005, and with the continuous line for α = 0.01.
N is set to 1000 in all considerations.

Fig. 2. Comparison of the analytical transmission coefficient
relation with the numerical data for E = 0.5 at various disorder
strength V . Numerical data shown by the diamond symbol is
for α = 0.001, by the triangle symbol is for α = 0.005, and by
the square symbol for α = 0.01. The analytical result is plotted
with the short dashed line for α = 0.001, with the long dashed
line for α = 0.005, and with the continuous line for α = 0.01.
N is set to 1000 in all considerations.

Fig. 3. Comparison of the analytical transmission coefficient
relation with the numerical data for V = 0.2 at various energy
levels E. Numerical data shown by the diamond symbol is for
α = 0.1, by the triangle symbol is for α = 0.001, and by the
square symbol for α = 0.01. Analytical result is plotted with
the short dashed line for α = 0.01, with the long dashed line
for α = 0.1, and with the continuous line for α = 0.001. N is
set to 1000 in all considerations.

the absence of metal-insulator transition for the system.
This totally expected result is important in that it is not
only in agreement with the predictions of the known nu-
merical studies but also with the prediction of scaling the-
ory. In other words, the role played by the correlation of
dichotomic process does not affect the main prediction of
scaling theory. This conclusion is the prominent utility
of the analytical transmission coefficient relation derived
in this paper. As shown by the above analytic treatment,
while all states in this model are localized, the scaling
properties of the model are still interesting from the point
of view of single parameter scaling theory [39–42]. Of
course, this is no easy task, but it might be worth pur-
suing in the future.

In summary, in this paper 1D transport properties of
dichotomic correlated disorder have been studied analyti-
cally, and an analytical transmission coefficient expression
has been derived in terms of the relevant parameters of the
model. This analytic expression has been tested against
the result of direct numerical computation of the aver-
age transmission coefficient 〈T 〉 for the Anderson model,
by changing the system parameters. For all values of the
energy eigenvalues, the agreement between the analytical
expression and numerical data is perfect at small disor-
der strength and small Poisson parameter α. We think
that the agreement shows the relevance of the approxi-
mation used in the evaluation of the analytical conductiv-
ity relation. We have approached the question concerning
the importance of the analytical transmission expression
by utilizing it to demonstrate the absence of localization-
delocalization transition in the thermodynamic limits an-
alytically.
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